Heat transfer enhancement through control of thermal dispersion effects

نویسندگان

  • A.-R.A. Khaled
  • K. Vafai
چکیده

Heat transfer enhancements are investigated inside channels by controlling thermal dispersion effects inside the fluid. Different distributions for the dispersive elements such as nanoparticles or flexible hairy fins extending from the channel plates are considered. Energy equations for different fluid regions are dimensionalized and solved analytically and numerically. The boundary arrangement and the exponential distribution for the dispersive elements are found to produce enhancements in heat transfer compared to the case with a uniform distribution for the dispersive elements. The presence of the dispersive elements in the core region does not affect the heat transfer rate. Moreover, the maximum Nusselt number for analyzed distributions of the dispersive elements are found to be 21% higher than that with uniformly distributed dispersive elements for a uniform flow. On the other hand, the parabolic velocity profile is found to produce a maximum Nusselt number that is 12% higher than that with uniformly distributed dispersive elements for the boundary arrangement. The distribution of the dispersive elements that maximizes the heat transfer is governed by the flow and thermal conditions plus the properties of the dispersive elements. Results in this work point towards preparation of super nanofluids or super dispersive media with enhanced cooling characteristics. 2005 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Thermal Dispersion Effects for Single and two Phase Analysis of Heat Transfer in Porous Media

The present work involves numerical simulation of a steady, incompressible forcedconvection fluid flow through a matrix of porous media between two parallel plates at constanttemperature. A Darcy model for the momentum equation was employed. The mathematical model forenergy transport was based on single phase equation model which assumes local thermal equilibriumbetween fluid and solid phases. ...

متن کامل

Enhancement in energy and exergy efficiency of a solar receiver using suspended alumina nanparticles (nanofluid) as heat transfer fluid

An experimental and theoretical energy and exergy analysis was conducted for a cylindrical cavity receiver employed in a parabolic dish collector. Based on simultaneous energy and exergy analysis, the receiver average wall temperature and overall heat transfer coefficient were determined. A simplified Nusselt number for Heat Transfer Fluid (HTF) through the receiver as a function of Reynolds an...

متن کامل

Nanofluids for Heat Transfer Enhancement – A Review

A nanofluid is a dilute liquid suspension of particles with at least one critical dimension smaller than ~100 nm. Research works so far suggest that nanofluids offer excellent heat transfer enhancement over conventional base fluids. The enhancement depends on several factors such as particle shape, particle size distribution, volume fraction of nanoparticles, temperature, pH, and thermal conduc...

متن کامل

Enhancement of Heat Transfer over a Double Forward Facing Step with Square Obstacle through Taguchi’s Optimization Technique

In this paper, the heat transfer to the fluid, passing through the double forward facing step (FFS) channel with square obstacle is enhanced by Taguchi’s S/N ratio analysis. Flow through the forward facing step channel has a wide range of applications in thermal systems due to its flow separation and subsequent reattachment, which in turn enhances the heat transfer. Flow separation and reattach...

متن کامل

Numerical simulation of nanofluids flow and heat transfer through isosceles triangular channels

Nanofluids are stable suspensions of nanoparticles in conventional heat transfer fluids (base fluids) that exhibit better thermal characteristics compared to those of the base fluids. It is important to clarify various aspects of nanofluids behavior. In order to identify the thermal and hydrodynamic behavior of nanofluids flowing through non-circular ducts, in the present study the laminar flow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005